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1 Hoeftding’s Inequality

In this section we present Hoeffding’s Inequality and its proof. To do so, we first go through the Hoeffding’s
Lemma and Markov’s Inequality.

Lemma 1 (Hoeffding’s Lemma). For a random variable ¢ < X < b such that E[X] = 0, we have
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Proof: Note that exp(Az) is a convex function, we have:
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Therefore, by the mono-increasing of exp(x),
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Proved.

Theorem 1 (Markov’s Inequality) X is a non-negative random variable, a > 0,
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Proof: By definition of F[X],
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Proved.

Theorem 2 (Hoeffding’s Inequality) Let X1, Xo,..., X, be independent random variables such that a; <
X; <b;and E[X;] =0 foralli=1,2,...,n. Then, for all ¢ > 0,
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Proof: For all A > 0, by the monotonically increasing of exp(:), we have
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By Markov’s inequality and the independence of all Xj:

=P exp(/\ZXZ—) > exp()\t)]

Blexp(A i, Xi)]
exp(At)

Hexp AX;) 1

= exp(—)\t) H E [eXp()\Xz)]

IN

P exp()\ZXi) > eXp(/\t)]

i=1

= exp(—

Apply Hoeffding’s Lemma, we have
exp(—At) HE exp(AX;)] < exp(—At) H exp(A3(a; — b;)?/8))
=1

1=1
n L _2
= exp (Zi—l(agbl)/@_t)\)

The last term achieves the minimum when A = 4¢/(3 (a; — b;)?), take \ as this, and we get
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Proved.



2 Martingales

In this section, we introduce the concept of Martingales and show the related Azuma-Hoeffding Inequality.

Definition 1 (Martingales). A basic definition of a discrete-time martingale is a discrete-time stochastic
process (i.e., a sequence of random variables) X, Xo, X3 that satisfies for any time n,

E[|X,]] < o0

E[Xn+1 | X1, 7X'IL] =X,

That is, the conditional expected value of the next observation, given all the past observations, is equal to
the most recent observation.

Definition 2 (Martingale Difference Sequence). A martingale difference sequence (MDS) is related to the
concept of the martingale. A stochastic series X is an MDS if its expectation with respect to the past is
zero. Formally, consider an adapted sequence { Xy, F;}°°, on a probability space (Q, F,P). X; is an MDS if
it satisfies the following two conditions:

E[lX:]] < o0
E [Xt‘]:t—l] = 0, a.s.

for all t. By construction, this implies that if Y; is a martingale, then X; = Y; — Y;_; will be an MDS—hence
the name.

Theorem 3 (Azuma-Hoeffding Inequality). Let Zy, Z1, . .., Z, be a martingale sequence of random variables
such that for all 4, there exists a constant ¢; such that |Z; — Z;_1| < ¢;, then
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Proof: By Markov Inequality,
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By using the iterated expectation property that
Elg(X,Y)] = Ey[Ex)y[9(X,Y) | Y]]

We have
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Since H?:_ll exp (A(Z; — Z;_1)) is a constant once given Zy, Z1, ..., Z,_1, we can take it out of the expecta-
tion:
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Because (Z;) is a Martingale sequence, we have
E[Zn - Zn—l | 207Z17 cee 7Zn—1] = E[Zn | 207Z17 oo 7Zn—1] - Zn—l = Zn—l - Zn—l =0

Also, |Z,, — Zp—1| < ¢,. Then we can apply Hoeffding’s lemma:
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Then
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By induction,
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Proved.



