## Hoeffding's Inequality and Martingales

Chenye Yang

11/26/2022

## 1 Hoeffding's Inequality

In this section we present Hoeffding's Inequality and its proof. To do so, we first go through the Hoeffding's Lemma and Markov's Inequality.

**Lemma 1** (Hoeffding's Lemma). For a random variable  $a \leq X \leq b$  such that E[X] = 0, we have

$$E[\exp(\lambda X)] \le \exp\left(\frac{\lambda^2(b-a)^2}{8}\right)$$

**Proof:** Note that  $\exp(\lambda x)$  is a convex function, we have:

$$\exp(\lambda X) \le \frac{b-X}{b-a} \exp(\lambda a) + \frac{X-a}{b-a} \exp(\lambda b)$$

Take the expectation,

$$E[\exp(\lambda X)] \le \frac{b - E[X]}{b - a} \exp(\lambda a) + \frac{E[X] - a}{b - a} \exp(\lambda b)$$
$$= \frac{b}{b - a} \exp(\lambda a) + \frac{-a}{b - a} \exp(\lambda b)$$
$$= \exp(L(\lambda (b - a)))$$

where

$$L(h) = \frac{ha}{b-a} + \ln\left(1 + \frac{a - a\exp(h)}{b-a}\right)$$

Then we have

$$L(0) = L'(0) = 0$$
  $L''(h) = -\frac{ab \exp(h)}{(b - a \exp(h))^2}$ 

By inequality of arithmetic and geometric means (AM-GM inequality)  $\frac{x+y}{2} \geq \sqrt{xy}$ ,

$$-ab\exp(h) = (b) \cdot (-a\exp(h)) \le \left(\frac{b - a\exp(h)}{2}\right)^2$$

$$\implies L''(h) \le \frac{1}{4}, \text{ for all } h$$

From Tayler's theorem, for  $\theta \in [0, 1]$ ,

$$L(h) = L(0) + hL'(0) + \frac{1}{2}h^2L''(h\theta) = \frac{1}{2}h^2L''(h\theta) \le \frac{1}{8}h^2$$
, for all  $h$ 

Therefore, by the mono-increasing of  $\exp(x)$ ,

$$E[\exp(\lambda X)] \le \exp(L(\lambda(b-a))) \le \exp\left(\frac{1}{8}\lambda^2(b-a)^2\right)$$

Proved.

**Theorem 1** (Markov's Inequality) X is a non-negative random variable, a > 0,

$$P(X \ge a) \le \frac{E[X]}{a}$$

**Proof:** By definition of E[X],

$$\begin{split} E[X] &= \int_{-\infty}^{\infty} x f(x) dx = \int_{0}^{\infty} x f(x) dx = \int_{0}^{a} x f(x) dx + \int_{a}^{\infty} x f(x) dx \\ &\geq \int_{a}^{\infty} x f(x) dx \\ &\geq \int_{a}^{\infty} a f(x) dx = a \int_{a}^{\infty} f(x) dx = a P(X \geq a) \\ \Longrightarrow &\frac{E[X]}{a} \geq P(X \geq a) \end{split}$$

Proved.

**Theorem 2** (Hoeffding's Inequality) Let  $X_1, X_2, \ldots, X_n$  be independent random variables such that  $a_i \leq X_i \leq b_i$  and  $E[X_i] = 0$  for all  $i = 1, 2, \ldots, n$ . Then, for all t > 0,

$$P\left[\sum_{i=1}^{n} X_i \ge t\right] \le \exp\left(-\frac{2t^2}{\sum_{i=1}^{n} (a_i - b_i)^2}\right)$$

**Proof:** For all  $\lambda > 0$ , by the monotonically increasing of  $\exp(\cdot)$ , we have

$$P\left[\sum_{i=1}^{n} X_i \ge t\right] = P\left[\exp(\lambda \sum_{i=1}^{n} X_i) \ge \exp(\lambda t)\right]$$

By Markov's inequality and the independence of all  $X_i$ :

$$P\left[\exp(\lambda \sum_{i=1}^{n} X_i) \ge \exp(\lambda t)\right] \le \frac{E[\exp(\lambda \sum_{i=1}^{n} X_i)]}{\exp(\lambda t)}$$

$$= \exp(-\lambda t)E\left[\prod_{i=1}^{n} \exp(\lambda X_i)\right]$$

$$= \exp(-\lambda t)\prod_{i=1}^{n} E\left[\exp(\lambda X_i)\right]$$

Apply Hoeffding's Lemma, we have

$$\exp(-\lambda t) \prod_{i=1}^{n} E\left[\exp(\lambda X_i)\right] \le \exp(-\lambda t) \prod_{i=1}^{n} \left(\exp(\lambda^2 (a_i - b_i)^2 / 8)\right)$$
$$= \exp\left(\frac{\sum_{i=1}^{n} (a_i - b_i)^2}{8} \lambda^2 - t\lambda\right)$$

The last term achieves the minimum when  $\lambda = 4t/(\sum_{i=1}^{n} (a_i - b_i)^2)$ , take  $\lambda$  as this, and we get

$$P\left[\sum_{i=1}^{n} X_i \ge t\right] \le \exp\left(-\frac{2t^2}{\sum_{i=1}^{n} (a_i - b_i)^2}\right)$$

Proved.

## 2 Martingales

In this section, we introduce the concept of Martingales and show the related Azuma-Hoeffding Inequality.

**Definition 1** (Martingales). A basic definition of a discrete-time martingale is a discrete-time stochastic process (i.e., a sequence of random variables)  $X_1$ ,  $X_2$ ,  $X_3$  that satisfies for any time n,

$$E[|X_n|] < \infty$$
  
$$E[X_{n+1} \mid X_1, \dots, X_n] = X_n$$

That is, the conditional expected value of the next observation, given all the past observations, is equal to the most recent observation.

**Definition 2** (Martingale Difference Sequence). A martingale difference sequence (MDS) is related to the concept of the martingale. A stochastic series X is an MDS if its expectation with respect to the past is zero. Formally, consider an adapted sequence  $\{X_t, \mathcal{F}_t\}_{-\infty}^{\infty}$  on a probability space  $(\Omega, \mathcal{F}, \mathbb{P})$ .  $X_t$  is an MDS if it satisfies the following two conditions:

$$E[|X_t|] < \infty$$

$$E[X_t|\mathcal{F}_{t-1}] = 0, a.s.$$

for all t. By construction, this implies that if  $Y_t$  is a martingale, then  $X_t = Y_t - Y_{t-1}$  will be an MDS—hence the name.

**Theorem 3** (Azuma-Hoeffding Inequality). Let  $Z_0, Z_1, \ldots, Z_n$  be a martingale sequence of random variables such that for all i, there exists a constant  $c_i$  such that  $|Z_i - Z_{i-1}| < c_i$ , then

$$P[Z_n - Z_0 \ge t] \le \exp\left(-\frac{t^2}{2\sum_{i=1}^n c_i^2}\right)$$

**Proof:** By Markov Inequality,

$$P[Z_n - Z_0 \ge t] = P[\exp(\lambda(Z_n - Z_0)) \ge \exp(\lambda t)]$$

$$\le \exp(-\lambda t) E[\exp(\lambda(Z_n - Z_0))]$$

$$= \exp(-\lambda t) E\left[\exp\left(\lambda \sum_{i=1}^n (Z_i - Z_{i-1})\right)\right]$$

$$= \exp(-\lambda t) E\left[\prod_{i=1}^n \exp(\lambda(Z_i - Z_{i-1}))\right]$$

By using the iterated expectation property that

$$E[q(X,Y)] = E_Y[E_{X|Y}[q(X,Y) | Y]]$$

We have

$$P[Z_n - Z_0 \ge t] \le \exp(-\lambda t) E_{Z_0, Z_1, \dots, Z_{n-1}} \left[ E_{Z_n | Z_0, Z_1, \dots, Z_{n-1}} \left[ \prod_{i=1}^n \exp\left(\lambda (Z_i - Z_{i-1})\right) \mid Z_0, Z_1, \dots, Z_{n-1} \right] \right]$$

Since  $\prod_{i=1}^{n-1} \exp(\lambda(Z_i - Z_{i-1}))$  is a constant once given  $Z_0, Z_1, \ldots, Z_{n-1}$ , we can take it out of the expectation:

$$P[Z_n - Z_0 \ge t] \le \exp(-\lambda t) E\left[\prod_{i=1}^{n-1} \exp\left(\lambda(Z_i - Z_{i-1})\right) \cdot E\left[\exp\left(\lambda(Z_n - Z_{n-1})\right) \mid Z_0, Z_1, \dots, Z_{n-1}\right]\right]$$

Because  $(Z_i)$  is a Martingale sequence, we have

$$E[Z_n - Z_{n-1} \mid Z_0, Z_1, \dots, Z_{n-1}] = E[Z_n \mid Z_0, Z_1, \dots, Z_{n-1}] - Z_{n-1} = Z_{n-1} - Z_{n-1} = 0$$

Also,  $|Z_n - Z_{n-1}| \le c_n$ . Then we can apply Hoeffding's lemma:

$$E\left[\exp\left(\lambda(Z_{n}-Z_{n-1})\right) \mid Z_{0},Z_{1},\ldots,Z_{n-1}\right] \le \exp\left(\frac{\lambda^{2}(2c_{n})^{2}}{8}\right) = \exp\left(\frac{\lambda^{2}c_{n}^{2}}{2}\right)$$

Then

$$P[Z_{n} - Z_{0} \ge t] \le \exp(-\lambda t) E\left[\prod_{i=1}^{n-1} \exp(\lambda(Z_{i} - Z_{i-1})) \cdot E\left[\exp(\lambda(Z_{n} - Z_{n-1})) \mid Z_{0}, Z_{1}, \dots, Z_{n-1}\right]\right]$$

$$\le \exp(-\lambda t) \exp\left(\frac{\lambda^{2} c_{n}^{2}}{2}\right) E\left[\prod_{i=1}^{n-1} \exp(\lambda(Z_{i} - Z_{i-1}))\right]$$

By induction,

$$P[Z_n - Z_0 \ge t] \le \exp(-\lambda t) \exp\left(\frac{\lambda^2 c_n^2}{2}\right) E\left[\prod_{i=1}^{n-1} \exp\left(\lambda(Z_i - Z_{i-1})\right)\right]$$

$$\le \exp(-\lambda t) \exp\left(\frac{\lambda^2 c_n^2}{2}\right) \exp\left(\frac{\lambda^2 c_{n-1}^2}{2}\right) E\left[\prod_{i=1}^{n-2} \exp\left(\lambda(Z_i - Z_{i-1})\right)\right]$$
...
$$\le \exp(-\lambda t) \exp\left(\frac{\lambda^2 \sum_{i=1}^{n} (c_i^2)}{2}\right)$$

Letting  $\lambda = \frac{t}{\sum_{i=1}^{n}(c_i^2)}$ , we get

$$P[Z_n - Z_0 \ge t] \le \exp\left(-\frac{t^2}{2\sum_{i=1}^n c_i^2}\right)$$

Proved.